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Matter at High Energy Density (HED) is found
throughout our universe

Insulating H,
and, He

«
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Core .
Material Metallic H*. \%%

(and He, He*
or He**)

C. J. Hamilton
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Just a few years ago, ultra-high pressure phase
diagrams were considered to be very simple

Melt curves typically followed a Lindeman law Physics
and high pressure structures were simple
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Above 200 GPa Sodium becomes a large band-
gap insulator! -- Electride --

“. ..what the present results
most assuredly demonstrate is
the importance of pressure in
revealing the limitations of
previously hallowed models of

solids”
120 GPa —Neil Ashcroft (Nature, 2009).
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Traditional view that a/l materials become
simple at high pressure is incorrect!
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Many materials are predicted to adopt complex
structures in high pressure solid and fluid phases

Canales, PRL, (2012)
Hamel et al, 2014
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Using laser-driven compression and the NIF we
are study Extreme-Compression (p/p,>2) Science

We want to measure:
Stress-Density
Temperature
Structure
Solid-Solid Phase Transitions
Solid-Liquid Phase Transitions
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1 Mbar = 100 GPa = 0.1 TPa
We use a shaped laser pulse to control the

time-dependent laser ablation drive pressure
A Steady Shock

~__ablator gample
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Ramp Compression

P
Steady Shocks -> Impedance Matching
Decaying Shocks -> Us vs R, T, Heat Capacity
Ramp Compression -> Lower Temperature
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Ramp-compression EOS of nano-crystalline
diamond to 50 Mbar.
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Resolving x-ray absorption structure gives
temperature along different compression paths

EXAFS data collected in 50 ps
snapshot
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T versus P data for Fe shows structure is HCP and

information on Earth’s core conditions

Y. Ping, et al., PRL, 111,
(2013).
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Using the laser-driven compression and the NIF
we will study Extreme Compression Science

We want to measure:
Stress-Density
Temperature
Structure
Solid-Solid Phase Transitions
Solid-Liquid Phase Transitions
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Using LDRD funding, we developed in-situ x-ray
diffraction at Janus and Omega
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Demonstrated at Omega, PXRDIP
(Powder X-Ray Diffraction Image Plates)
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In situ diffraction provides conclusive crystal structure.
Demonstrated at Omega
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We have observed Shock-Melt — Refreeze for
first time ever in Sn at Omega

Pressure [GPa]

[May 28, 2014]
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We are fielding diffraction on NIF (13 shots so far)
TARDIS (TARget Diffraction In Situ) diagnostic

straight
through

Three image plates collect
the diffraction data
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Last week we observed at least 9 diffraction lines
from Pb at ~2.5 Mbar, and the (undriven) Ta pinhole
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HIGH-PRESSURE PHASE TRANSITION AND EQUATION OF STATE OF LEAD TO 238 GPa

Ta pinhole z 150'2‘? HK. Mao*, Y. Wu**, L.F. Shu*, J.Z. Hu*, R.J. Hemley* and D.E. Cox'
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i - ) Our observation of BCC phase
drive VISAR | suggests that we can study equilibrium
beams 10 N140605

Prossus = 257615 GPa solid phase diagrams on the NIF
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